Analysis of four-port system for bistable memory in silica toroid microcavity

Wataru Yoshiki & Takasumi Tanabe*
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University
*takasumi@elec.keio.ac.jp
Outline

- **Background**
 - Various nonlinearities in an optical microcavity
 - Optical bistability in a microcavity

- **Motivation**

- **Model**
 - Two-port and four-port systems
 - Transmittance and coupling
 - CMT and FEM
 - Platform for Kerr bistable memory

- **Result**
 - Refractive index change
 - Kerr bistable memory in 2-port system
 - Kerr bistable memory in 4-port system

- **Summary**
Background
- Various nonlinearities in an optical microcavity -

Nonlinearities in microcavity

- **TO effect:**
 - Large coefficient but slow (ms)
 - Energy wasted as heat

- **Carrier plasma effect:**
 - Large coefficient and fast (ns)
 - Suffers from free-carrier absorption

- **Kerr effect:**
 - Small coefficient but very fast (fs)
 - Small energy consumption

Various nonlinearities in Si

Background
- Optical bistability in a microcavity -

- Small volume and high Q makes bias power low.
- Bistability demonstrated using TO and carrier effects.
- Kerr bistability in side-coupled system demonstrated numerically: Higher contrast

- Direct-coupled system

- Side-coupled system

\[P_{\text{bias}} = \frac{\varepsilon_0 \varepsilon n \omega}{2n_2} \frac{P_{\text{cav}}}{Q^2} \]

Motivation

Problems

☐ Few demonstrations of bistability using Kerr effect

☐ Nonlinear behavior of side coupled system unknown when Kerr and TO effects are present

Purpose of this study

☐ Reveal the nonlinear behavior of a side-couple ring cavity system when the material has Kerr and TO coefficients.
Model
- Two-port and four-port systems -

Two-port system
- Only τ_{coup} is controllable
- Small τ_{tot} is required for Kerr bistability

$$\tau_{\text{tot}}^{-1} = \tau_{\text{abs}}^{-1} + \tau_{\text{loss}}^{-1} + \tau_{\text{coup}}^{-1}$$

Four-port system
- Strong coupling (short- τ_{coup}) is needed for achieving Kerr

$$\tau_{\text{tot}}^{-1} = \tau_{\text{abs}}^{-1} + \tau_{\text{loss}}^{-1} + \tau_{\text{coup1}}^{-1} + \tau_{\text{coup2}}^{-1}$$

Model
- Transmittance and coupling -

Transmittance of two-port system

\[T_{\text{min}} = \left(\frac{\tau_{\text{int}}^{-1} - \tau_{\text{coup}}^{-1}}{\tau_{\text{int}}^{-1} + \tau_{\text{coup}}^{-1}} \right)^2 \]

\(\tau_{\text{int}} \gg \tau_{\text{coup}} \)

- Over coupling is required for high speed (\(\tau_{\text{coup}} = \tau_{\text{int}}/100 \)): Dip is shallow

Transmittance of four-port system

\[T_{\text{min}} = \left(\frac{\tau_{\text{int}}^{-1} - \tau_{\text{coup1}}^{-1} + \tau_{\text{coup2}}^{-1}}{\tau_{\text{int}}^{-1} + \tau_{\text{coup1}}^{-1} + \tau_{\text{coup2}}^{-1}} \right)^2 \]

\(\tau_{\text{int}} \gg \tau_{\text{coup1}} = \tau_{\text{coup2}} \)

- Critical coupling is obtained even at a high speed (\(\tau_{\text{coup1}} = \tau_{\text{coup2}} = \tau_{\text{int}}/100 \)): Dip is deep
Model
– CMT and FEM –

□ CMT in a 4 port system with a ring cavity

$$\frac{da(t)}{dt} = j\omega_0(\Delta n) - \frac{1}{2}(\tau_{\text{abs}}^{-1} + \tau_{\text{loss}}^{-1} + \tau_{\text{coup1}}^{-1} + \tau_{\text{coup2}}^{-1})a(t)$$

$$+ \sqrt{\frac{1}{\tau_{\text{coup1}}}} \exp(j\theta)s_{\text{in}}(t)$$

$$s_{\text{out1}}(t) = \exp(-j\beta_1 d)s_{\text{in}}(t) - \sqrt{\frac{1}{\tau_{\text{coup1}}}} \exp(j\theta)a(t)$$

Light energy $U_p = |a|^2$, Output power $P_{\text{out1}} = |s_{\text{out1}}|^2$

□ Effective refractive index change Δn

$$\Delta n(t) = \frac{\iint (\Delta n_{\text{Kerr}}(x,y,t)+\Delta n_{\text{TO}}(x,y,t))I(x,y)dxdy}{\iint I(x,y)dxdy}$$

$$\Delta n_{\text{Kerr}}(x,y,t) = \frac{2n_2c}{n_0}u_p(x,y,z)$$

$$\Delta n_{\text{TO}}(x,y,t) = n_0\xi T(x,y,t)$$

FEM

2012/12/04 ISPEC2012 W. Yoshiki
Model
- Platform for Kerr bistable memory -

- Silica toroid microcavity
 - Has ultra-high quality factor ($Q_{\text{int}} = 4 \times 10^8$ [1]).
 - Mainly composed of silica.
 - Extremely low material loss ($\alpha = 0.2$ dB/m).
 - No carrier generation (no carrier effect).
 - Can be fabricated on a chip.

Choose as a platform of Kerr bistable memory

- Parameters & assumptions used for calculation
 - $\tau_{\text{int}} = 329$ ns (corresponding to $Q_{\text{int}} = 4 \times 10^8$).
 - Intrinsic loss is dominated by the absorption ($\tau_{\text{int}} \approx \tau_{\text{abs}}$).
 - Critical coupling condition $\tau_{\text{coup1}} = \left(\tau_{\text{int}}^{-1} + \tau_{\text{coup2}}^{-1}\right)^{-1}$ is satisfied.

Result

- Refractive index change dependent on τ_{coup2}

- Refractive index change caused by Kerr and TO effects in 4-port system.

- 3 μs-wide rectangular pulse inputted.

- Only the regime, where Δn_{Kerr} is flat and Δn_{Kerr} is larger than Δn_{TO}, can be used for Kerr bistable memory.

 (shown as “Kerr memory usable”)

- Δn_{Kerr} is larger than Δn_{TO} until 2.3 μs is passed.

- Rising time of Δn_{Kerr} become shorter when τ_{coup2} become shorter.

Short- τ_{coup} is desirable for the effective use of “Kerr memory usable” regime.

- Kerr bistable memory in 2-port system -

In the both cases, U_p shows a bistable behavior.
However, P_{out} doesn’t show the bistability.
Kerr bistable memory is not feasible in a 2-port system.
Result

- Kerr bistable memory in 4-port system -

Bistable operation

Memory operation

- In the both operations, U_p and P_{out1} show a bistable behavior.

Kerr bistable memory is feasible in a 4-port system.

- Memory holding time: **500 ns**
- Drive power: **7.3 mW**

Summary

- Described the behavior of a side-couple and a 4-port WGM cavity systems by using CMT and FEM.

- Revealed that optical Kerr bistable memory is feasible in a 4-port system (but it is difficult with a 2-port system) when TO effect is present.
Thank you for your attention!

For more information

Acknowledgement

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications

The Canon Foundation