Study on detection of contamination of pure water using silica microsphere and silica toroid microcavity

Jiro Nishimura and Takasumi Tanabe*

*{takasumi@elec.keio.ac.jp}

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan
Outline

1. Introduction: Conventional optical sensors
 ✓ Tradeoffs device size vs. sensitivity
2. Objective
3. Sensor w/ silica toroid microcavity
 ✓ Detection limit
4. Sensor w/ silica microsphere
 ✓ Comparison of two types of cavities
5. Summary
Advantage of microcavity sensor

Conventional: IT spectroscopy

![Diagram showing laser, sample, power monitor, and light interacts only once]

New method: Microcavity

![Diagram showing output light, fluidic channel, input light, ring resonator, and interact many times]

Small size & sensitivity **CANNOT** coexist

Small size & sensitivity **CAN** coexist

<table>
<thead>
<tr>
<th></th>
<th>Silicon microring resonator</th>
<th>Photonic crystal</th>
<th>Silica toroid cavity</th>
<th>Silica microsphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2.5 μm³</td>
<td>1.7 μm³</td>
<td>110 μm³</td>
<td>5,000 μm³</td>
</tr>
<tr>
<td>Q</td>
<td>5,000</td>
<td>10⁶</td>
<td>10⁸</td>
<td>8 × 10⁹</td>
</tr>
<tr>
<td>Coupling w/ fiber</td>
<td>difficult</td>
<td>difficult</td>
<td>easy</td>
<td>easy</td>
</tr>
</tbody>
</table>

References:

F. Vollmer et al., APL 80, 4057 (2002).
Objective

1. Demonstrate high sensitivity and small size using a silica toroid microcavity

2. Show the comparison between toroid microcavity vs. microsphere
Detection is performed according to resonant shift

\[
\frac{\Delta \lambda}{\lambda_0} = \frac{\alpha_{ex} \sigma}{\varepsilon_0 (n_s^2 - n_0^2) R_0}
\approx \frac{\Delta R}{R_0} + \frac{\Delta n}{n_0}
\]

Experiment using silica toroid microcavity

Experimental procedure

1. Tapered fiber
2. Liquid
3. Soak (3 min)
4. Dry
5. Measure

Measure

Soak (3 min)

Dry

Measure

Pure water

NaCl aq (25 mM)

Q = 1.0 \times 10^6

Transmittance (a.u.)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Transmittance (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1551.0</td>
<td>Before adsorption</td>
</tr>
<tr>
<td>1551.5</td>
<td>After adsorption</td>
</tr>
<tr>
<td>1552.0</td>
<td></td>
</tr>
<tr>
<td>1552.5</td>
<td></td>
</tr>
<tr>
<td>1553.0</td>
<td></td>
</tr>
</tbody>
</table>

Wavelength (nm)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Transmittance (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1544.5</td>
<td>Before adsorption</td>
</tr>
<tr>
<td>1545.0</td>
<td>After adsorption</td>
</tr>
<tr>
<td>1545.5</td>
<td></td>
</tr>
<tr>
<td>1546.0</td>
<td></td>
</tr>
<tr>
<td>1546.5</td>
<td></td>
</tr>
</tbody>
</table>
NaCl detection w/ toroid microcavity

Experimental results agrees well w/ theory

\[\frac{\Delta \lambda}{\lambda_0} = \frac{\alpha_{ex} \sigma}{\varepsilon_0 (n_s^2 - n_0^2) R_0^{-1}} \]

\[\Delta \lambda \frac{\lambda}{\lambda_0} = \frac{\alpha_{ex}}{\varepsilon_0 (n_s^2 - n_0^2) R_0} \sigma \]
Our method	Commercial method
Detection limit | 1.2 mM | 1.7 mM
Sample volume | 0.1 nL | 0.3 mL
Experiment using silica microsphere

Experimental procedure

Tapered fiber
Silica microsphere

Measure → Soak → Dry → Measure

Liquid

32.2 μm
92.7 μm

$Q = 1.0 \times 10^6$

Pure water

Transmittance (a.u.)

Wavelength (nm)

37.15 pm
Azimuthal number vs. shift

Randomness $R^1 (\mu m^{-1})$

Comparison between silica microsphere and silica toroid cavity

Silica microsphere

- Δ\(\lambda_{FSR}\) = 5.91 nm
- Many azimuthal modes are excited
- Diameter: 92.7 µm
- Length: 32.2 µm

Toroid cavity

- Δ\(\lambda_{FSR}\) = 6.65 nm
- Easy!!
- Diameter: 38.7 µm

A number of modes

A few modes
Summary

1. Demonstrated NaCl detection in water with silica toroid microcavity
 - High detection sensitivity: ~10 mM (can reduce to 1.2 mM)
 - Small sample volume: 0.1 nL

2. Discussed the comparison between microtoroid vs. microsphere
 - Toroid microcavity is more appropriate than microsphere
Thank you very much