Analysis and Experimental Measurement of the Q Factor of Hexagonal Microcavities Fabricated with Crystal Growth

Hiroshi Kudo1, Ryo Suzuki1, Atsushi Yokoo2,3, and *Takasumi Tanabe1

1 Electronics and Electrical Engineering, Keio University
2 NTT Nanophotonics Center, NTT Corporation
3 NTT Basic Research Laboratories, NTT Corporation

*takasumi@elec.keio.ac.jp
Progress of Polygonal microcavities

Merit
✓ Sizeable light source on the substrate
✓ Robust system using coupling coefficient

ZnO

InGaAs/ GaAs

Al₂O₃

CLEO-PR & OECC/PS 2013 TuPM-12, T. Kato et al., “Analysis of Various Whispering Gallery Modes in an Octagonal Silica Toroidal Microcavity.”
Laser-heated pedestal growth (LHPG)

Original LHPG:
- Fabrication of uniform crystal rods possible
- Fabrication of rods with diameter $< 100 \mu m$ possible
- Fabrication of rods with smooth surface possible

Modified LHPG:
- Form bulge by changing growth rate (it allows WGM excitation)

Experimental setup

Mathematical expression:

$$D_{grown} = D_{feed} \times \sqrt{\frac{v_{feed}}{v_{seed}}}$$

Fabricated cavity

WGM cavity fabricated
Optical measurement

The Q is dependent on the cross-sectional shape.

Q factor vs. corner radius

What kind shape is the best to obtain high Q?
Mode mixing between different modes in hexagonal cavities

Strong coupling occurs between perturbed & quasi modes
A number of perturbed modes couple with the quasi mode.
In Detailed: Quasi-mode

Corner radius (μm)

Wavelength (μm)

13 14 15 16 17 18 19 20

1.545 1.550 1.555 1.560 1.565 1.570 1.575 1.580

Circular Hexagonal

Copyright © Keio University
In Detailed: Perturbed mode

![Graph showing wavelength versus corner radius with different symbol colors representing different corner shapes: hexagonal and circular.](image-url)
In Detailed: High-order (multi) perturbed mode

Corner radius (μm) vs. Wavelength (μm) graph showing the transition from Hexagonal to Circular geometry.
Q factors for different WGM modes

- **Low Q** = quasi-WGM (due to strong mode mixing)
- **High Q** = perturbed-WGM (but only with round corner)

![Graph showing Q factors vs. corner radius](image)

- **perturbed-WGM**
- **quasi-WGM**
Optimal size of hexagonal cavity for high-\(Q\).

In perturbed mode, the optimal radius is 30 \(\mu\text{m}\).
Summary

① Perturbed mode and Quasi mode is strongly coupled.
 ✓ Coupling coefficient $\kappa = 29.9$ GHz
 ✓ Large number of perturbed mode coupled with quasi-mode.

② Studied the effect of circle & hexagonal shape for these Q factor.
 ✓ Both perturbed and quasi mode exhibit low Q when the cavity is hexagonal.
 ✓ There are a optimal radius when the cavity is polygonal.
Acknowledgements

Financially supported by:

Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan

the Strategic Information and Communications R&D Promotion Programme (SCOPE)