We showed x8 higher isolation ratio is possible by using slow light photonic crystal waveguide with integrated magneto-optical material. A modified FDTD is made to model the propagation of light in off-diagonal permittivity material. It is used to study the isolation behavior of a photonic crystal waveguide where circular dichroism dependent material is integrated at the side of the waveguide. Our result shows the possibility on using slow light devices to enhance the magneto-optical effects.

Background

- **Magnetooptical effects isolator**
- **Non-reciprocal propagation w/dichroic circular polarization absorber**
- **Slow light w/PhC WG**

Isolation principle

- Right circular dichroism (RCD) materials absorb more RCP light than LCP.
- When TE mode light propagates the polarization of the evanescent electric fields E_{xy} rotates at both sides of waveguide in opposite directions.
- Circular polarization direction dependent absorber (circular dichroism:CD) (i.e. magneto-optical material) at the side of a WG works as non-reciprocal attenuator.

Motivation

- Slow light effect can enhance magneto-optical effect?

Calculated Results

- Pulse propagation
 - No circular dichroism ($\varepsilon_{xy} = 0.0$)
 - Circular dichroism ($\varepsilon_{xy} = 0.4$)

- **Conclusion & Future plan**
 - **Conclusion**
 - Circular dichroism based isolator was numerically demonstrated by FDTD calculation.
 - Slow light effect is confirmed to enhance magneto-optical effect.
 - **Future Plan**
 - ε_{xy} works as non-reciprocal absorption.
 - σ_{xy} works as non-reciprocal phase shift (NRPS).