Influence of Raman scattering on Kerr frequency comb in a silica toroidal microcavity

Takumi Kato*,
Tomoya Kobatake, Zhelun Chen, Ryo Suzuki, & Takasumi Tanabe

*takumi@phot.elec.keio.ac.jp

Department of Electronics and Electrical Engineering,
Faculty of Science and Technology,
Keio University, Japan
Outline

• Background & Motivation
 - Kerr comb in a silica toroidal microcavity (experiment)
• Analysis on four-wave mixing and Raman gain (analysis)
• Simulation with a split-step algorithm (numerical calc.)
• Summary
Kerr frequency comb generation

- **Cascade FWM**

- **High-Q optical microcavity**

- **Merit**
 - Small size (~µm)
 - High-Q
 - Small mode volume

$$\chi^3$$ available

Kerr comb in a silica toroidal microcavity

Experimental Setup

Result: Kerr comb

Result: Raman scattering

Result: Hybrid

FWM gain and Raman gain compete with each other.

Broadband Raman gain is peculiar to silica (amorphous).
Motivation

To find a way to control FWM and Raman scattering in a high-Q silica μ-cavity system

Previous researches (without the effect of FSR):
Comparison of threshold power b/w FWM and Raman scattering

This research (with the effect of FSR):
1. Analytically clarify FWM and Raman gain in a cavity mode
2. Numerically study competition b/w FWM & Raman gain
Outline

- Background & Motivation
 - Kerr comb in a silica toroidal microcavity (experiment)
- Analysis on four-wave mixing and Raman gain (analysis)
- Simulation with a split-step algorithm (numerical calc.)
- Summary
Four-wave mixing gain

[Case 1: in fiber propagation]

\[g(\Omega) = |\beta_2\Omega|\sqrt{\Omega_c^2 - \Omega^2} \]

\[\Omega_c^2 = \frac{4\gamma P_0}{|\beta_2|} \]

\(\gamma \): nonlinear coefficient

\(\beta_2 \): second-order dispersion

[Case 2: in cavity resonance]

\[g(\Omega) = \sqrt{(\gamma LP_0)^2 - (\delta_{\text{miss}})^2} \]

- detuning from a cavity mode

\[\delta_{\text{miss}} = \delta_0 - \beta_2 L\Omega^2/2 - 2\gamma LP_0 \]

\(\delta_0 \): detuning of input

To achieve gain in a desired frequency, proper input power must be chosen.
Four-wave mixing gain in a cavity

\[g(\Omega) = \sqrt{(\gamma L P_0)^2 - (\delta_{\text{miss}})^2} \]

\[\delta_{\text{miss}} = \delta_0 - \frac{\beta_2 L \Omega^2}{2} - 2\gamma L P_0 \]

\[\kappa P_{\text{input}} = (\gamma L)^2 P_0^3 - 2\delta_0 \gamma L P_0^2 + (\delta_0^2 + \alpha_{\text{tot}}^2) P_0 \]

- \(\gamma \): nonlinear coefficient
- \(\beta_2 \): second-order dispersion
- \(\delta_0 \): detuning of input
- \(L \): cavity length
- \(\kappa \): coupling coefficient
- \(\alpha_{\text{tot}} \): total loss

Input power (0~10 W)

FSR: 0.1 THz
Competition of FWM & Raman gain

Input power
- small
- medium
- high

1-FSR FWM
- Pump
- FWM gain

2-FSR FWM
- Raman scattering
- A condition dominated by Raman

Copyright © Keio University
Raman gain in a silica toroidal microcavity

\[g_{\text{raman}} = g_{\text{bulk}}^R \frac{P_0}{A_{\text{eff}}} L_{\text{eff}} - \text{loss} \]

\[L_{\text{eff}} = \frac{1}{\alpha_{\text{tot}}} \{1 - \exp(-\alpha_{\text{tot}}L)\} \]

Model: Silica toroid, FSR = 1.1 THz, \(Q_{\text{int}} = 5 \times 10^7 \)

\[g_{\text{bulk}}^R = 0.631 \times 10^{-11} \text{ at } \lambda_p = 1550 \text{ nm} \]

Outline

• Background & Motivation
 - Kerr comb in a silica toroidal microcavity (experiment)
• Analysis on four-wave mixing and Raman gain (analysis)
• Simulation with a split-step algorithm (numerical calc.)
• Summary
Numerical simulation model

Nonlinear Schrödinger equation

$$t_R \frac{\partial E}{\partial r} = \left(-\frac{\alpha}{2} - \frac{\kappa}{2} - i\delta_0 + iL \sum_{k \geq 2} \frac{\beta_k}{k!} \left(i \frac{\partial}{\partial T} \right)^k + N \right) E + \sqrt{\kappa} S$$

$$N = i\gamma L \int_{-\infty}^{\infty} R(t') |E(t - t')|^2 dt'$$

$$R(t) = (1 - f_R)\delta(t) + f_R h_R(t)$$

$$h_R(t) = \frac{\tau_1^2 + \tau_2^2}{\tau_1 \tau_2^2} \exp\left(-\frac{t}{\tau_2}\right) \sin\left(\frac{t}{\tau_1}\right)$$

r: round trip number
t_R: round trip time
δ_0: detuning
α: cavity loss
κ: coupling loss
L: cavity length
β: dispersion
γ: nonlinear coefficient

$\tau_1 = 12.2$ fs
$\tau_2 = 32$ fs
$f_R = 0.18$
Simulation result on Kerr comb generation

There is good agreement with the gain analysis result

\[P_{in} = 10 \text{ mW} \]

\[Q_{coup} = 3 \times 10^7 \]

\[Q_{coup} = 1 \times 10^8 \]

\[Q_{coup} = 9 \times 10^8 \]
Experimental results

Wavelength detuning

Short

medium

Long

4-FSR

Raman only

3-FSR
Summary

1. We analyzed FWM and Raman gain in a cavity model with the effect of FSR.

2. We simulated a Kerr cavity model including Raman effect. There is a good agreement with gain analysis.

We found a way to control Four-Wave Mixing and Raman scattering by changing pump condition.
Acknowledgement

Ministry of Education, Culture, Sport, Science, and Technology (MEXT) (KAKEN 15H05429)

Grant-in-Aid for the Leading Graduate School program for “Science for Development of Super Mature Society” from the Ministry of Education, Culture, Sport, Science, and Technology in Japan