Ultrasmall in-plane photonic crystal demultiplexer fabricated with photolithography

Yuta Ooka*, Nurul Ashikin Binti Daud, Tomohiro Tetsumoto and Takasumi Tanabe

Electronics and Electrical Engineering, Keio University, Japan

*yutaooka@phot.elec.keio.ac.jp
Outline

1. Background

2. Design & Fabrication
 • DeMUX design
 • Photolithographic fabrication

3. Optical measurement
 • Spectral property & wavelength tunability
 • Signal transmittance experiment & crosstalk

4. Discussion
 • Crosstalk preventable by optimizing position of output PhC waveguide

5. Summary
1. Background

Requirements for DeMUXs:
Small footprint, photolithographic process, silica-clad and in-plane operation

- **Wavelength Division Multiplexing (WDM)**
- **Previous work to realize DeMUX**
 1. **Glass Arrayed Waveguide Grating (AWG)**
 Footprint: 60 mm²/ch
 2. **Silicon AWG**
 Footprint: 0.07 mm²/ch

3. **Silicon Photonic Crystal (PhC)**
 Footprint: 0.0001 mm²/ch

- **Good points already achieved**
 i. Ultrasmall
- **Bad points need to improve**
 ii. EB lithography
 iii. Air-bridge
 iv. Out-of-plane radiation

This is our motivation.
2. Design & Fabrication: Designing DeMUX

Width-modulated line defect nanocavity based DeMUX

- Top view

Elements
- PhC
- Installation of output WG
- Width-modulated nanocavity

Achievements
- i. Ultrasmall
- ii. In-plane
- iii. Photolithographic
- iv. Silica-clad

Our latest research

Input

110 μm²/ch
2. Theory – Width-modulated nanocavity

High Q achieved with photolithographic & silica-clad WM nanocavity

- Structure

- Transmission spectrum

- IR image

Q > 10^4 required for dense WDM
2. Theory – Principle of our DeMUX

Linear frequency tuning achieved by changing lattice constant

- Top view

- FDTD calculation
3. Results – Basic properties - 1

Photolithographic DeMUX is fabricated properly.

- **Fabrication**
 - CMOS process foundry (IME in Singapore)
 - 248-nm lithography (with phase-shifting mask)

- **Setup**

- **Loss**
 - Total loss : 26 dB
 - Spot size converters : 5 dB
 - Si wire – PhCWG : 13 dB
 - Cavity – PhCWG : 8 dB

- **Transmission spectra**
 - $\Delta f = 267$ GHz
 - $\sigma = 45$ GHz
 - $Q = 4 \times 10^4$
3. Results – Basic properties - 2

Photolithographic DeMUX is fabricated properly.

- **Cross-section**

 ![Cross-section diagram](image)

- **Microscope image**

 ![Microscope image](image)

- **Heater tuning**

 ![Heater tuning graph](image)
3. Results – Achievements of this work

First demonstration of photolithographically fabricated photonic crystal DeMUX

<table>
<thead>
<tr>
<th>Stability & Structure</th>
<th>Fabrication method</th>
<th># of channels</th>
<th>Channel spacing</th>
<th>Configuration</th>
<th>Footprint</th>
<th>Other remarks</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High & PhC SiO₂ clad</td>
<td>Photo-lithography</td>
<td>8</td>
<td>267 GHz</td>
<td>In-plane</td>
<td>110 μm²</td>
<td>WM cavity</td>
<td>This work</td>
</tr>
<tr>
<td>Low & PhC air-bridge</td>
<td>EB lithography</td>
<td>5</td>
<td>3.7 THz</td>
<td>In-plane</td>
<td>30 μm²</td>
<td>L3 cavity</td>
<td>OE 14, 12394 (2006)</td>
</tr>
<tr>
<td>Low & PhC air-bridge</td>
<td>EB lithography</td>
<td>32</td>
<td>100 GHz</td>
<td>Out-of-plane</td>
<td>100 μm²</td>
<td>L3 cavity</td>
<td>OE 22, 4698 (2014)</td>
</tr>
<tr>
<td>High & Si-AWG</td>
<td>Photo-lithography</td>
<td>8</td>
<td>250 GHz</td>
<td>In-plane</td>
<td>17000 μm²</td>
<td>-</td>
<td>OL38, 2961 (2013)</td>
</tr>
</tbody>
</table>
3. Results – Property to process signals – 1

2.5 GHz transmittance demonstrated

• Setup

![Diagram of experimental setup]

• Eye diagram

![Eye diagram image]

Extinction ratio : 13.3 dB
Signal-noise ratio : 8.9 dB
3. Results – Property to process signals – 2

DeMUX operation achieved

• Input vs output chart

Return to zero 1 GHz square pulse
4. Discussion – Cause of crosstalk

Crosstalk occurs because transmittance decreases as channel number increases.

- Crosstalk chart magnification
4. Discussion – How to prevent crosstalk

With optimized design, coupling between cavity and output PhC waveguide does not decrease as lattice constant decreases

- **Original output PhC waveguide**
- **Optimized output PhC waveguide**

Three columns shift
4. Discussion – How to prevent crosstalk

We can achieve high and flat transmittance by optimizing the position of the output PhC waveguides.

- **Original output PhC waveguide**
- **Optimized output PhC waveguide**

![Diagram showing the original and optimized output PhC waveguides with a three columns shift.]

FDTD calculation
5. Summary

An ultrasmall, photolithographic, silica-clad and in-plane PhC DeMUX has been demonstrated.

- 110 μm²/channel
- 8 channels
- 267 GHz spacing
- Tunability
- 2.5 GHz signal processing
- Crosstalk (can be suppressed by optimization)

Acknowledgement

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications
Thank you

Yuta Ooka*, Nurul Ashikin Binti Daud, Tomohiro Tetsumoto and Takasumi Tanabe

Electronics and Electrical Engineering, Keio University, Japan
* yutaooka@phot.elec.keio.ac.jp