Photonic Crystal Nanocavity Photodetector Integrated with p-i-n Junction Fabricated by Photolithography Process

Nurul Ashikin Binti Daud, Yuta Ooka, Tomohiro Tetsumoto and Takasumi Tanabe

Electronics and Electrical Engineering, Keio University, Japan
Outline

1. Background

2. Design & Fabrication
 • Photolithographic fabrication

3. Photodetector properties
 • Electrical properties
 • Transmission and current spectrum at different input power
 • Responsivity

4. Discussion
 • Increase quantum efficiency

5. Summary
All-Si Photodetector

- **All Si photodetector**

 Optical input signal

 Electrical output signal

 Ideal photodetector characteristics:
 - Low dark current
 - High quantum efficiency
 - High responsivity
 - Small footprint

- **Previous research in photodetector**
 1. Ge integration on Si
 - High dark current
 2. Ion-implantation
 - High dark current
 3. p-i-n integrated Si waveguide
 - High optical input
PhC Nanocavity

PhC nanocavity
✓ High Q factor
✓ Small mode volume, V

Energy-efficient optical signal processing

Achievements
i. Low dark current
ii. High quantum efficiency on chip
iii. Low input power

Improvements
i. EB lithography
ii. Air-bridge structure

This is our motivation

Si PhC nanocavity with $p-i-n$

PhC Device

Achieved high Q factor with photolithography & silica clad

- Device structure
- IR image

- Transmission spectrum

✓ High Q factor
✓ Stable and robust
Electrical properties (Leak current at RT)

Bias voltage
-7V to 0 V

A : Ammeter

Leak current

Current

Ammeter

Photocurrent (A)

1.6E-11
1.4E-11
1.2E-11
1.0E-11
8.0E-12
-7 -6 -5 -4 -3 -2 -1 0

Bias voltage (V)
In comparison,

- InGaAs\(^1\) 1.3 nA at -3V
- Ge on Si\(^2\) 1\(\mu\)A at 4V

Results

• Setup

➢ Transmission spectrum and current are measured at the same time

TLD: Tunable laser diode
VOA: Variable optical attenuator
PM: Power meter
A: Ammeter
Results

Photodetector properties - 1

- Transmission spectrum and photocurrent at different input powers

✓ Resonance of cavity enhance the photocurrent
Photodetector properties - 1

- Transmission spectrum and current spectrum at different input powers

✓ The power output power increase together with the increase of input power
Photodetector properties - 1

- Transmission spectrum and current spectrum at different input powers

- The power output power increase together with the increase of input power

- Thermo-bistability effect where carriers are generated by the two-photon absorption (TPA)
Results

Photodetector properties - 2

- Responsivity

![Graph showing photocurrent vs. input power]

- 13.4 mA/W

- 0.89 % at 0.3mW input power
Achievements of current work

<table>
<thead>
<tr>
<th></th>
<th>Ge on Si(^1)</th>
<th>Si PhC nanocavity integrated p-i-n(^2)</th>
<th>Our device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footprint</td>
<td>10µm x 10µm</td>
<td>2.5µm x 4.4µm</td>
<td>2.9µm x 1.68µm</td>
</tr>
<tr>
<td>Structure</td>
<td>Deposition Ge on Si</td>
<td>EB lithography Air-bridge</td>
<td>Photolithography SiO(_2) cladding</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>-4V</td>
<td>-3V</td>
<td>-3V</td>
</tr>
<tr>
<td>Responsivity</td>
<td>3.2(A/W)</td>
<td>0.016(A/W)</td>
<td>0.013(A/W)</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>>300%</td>
<td>9.7%</td>
<td>0.89%</td>
</tr>
<tr>
<td>Leak current</td>
<td>1 µA</td>
<td>15pA</td>
<td>12pA</td>
</tr>
<tr>
<td>Coupled w/ fiber</td>
<td>No</td>
<td>-12 dB</td>
<td>-1.6 dB</td>
</tr>
</tbody>
</table>

Summary

1. PhC nanocavity integrated with p-i-n junction fabricated by photolithography and silica clad has been demonstrated as a photodetector operation

2. We achieved,

✓ Leak current : 12 pA at -3 V
✓ Responsivity : 13 mA/W
✓ Quantum efficiency : 0.89 %
Thank you

This work was supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications (MIC), Japan (#152103015)

Electronics and Electrical Engineering, Keio University, Japan
*ashikin@phot.elec.keio.ac.jp

Copyright © Keio University