Robust CMOS Compatible Photonic Crystal Nanocavity and DEMUX Filter

Takasumi Tanabe,
Yuta Ooka, Nurul Ashikin Binti Daud, and Tomohiro Tetsumoto

Department of Electronics and Electrical Engineering,
Faculty of Science and Technology, Keio University, Japan
Various high Q microcavities

- Various microcavities
- Quality factor and mode volume
- Applications

Quality factor

\[Q = \omega \times \frac{\text{stored energy}}{\text{power in/out}} \]

Photon density

\[\propto \frac{Q}{V} \]

Applications

- All-optical switching
- Optical buffer
- Cavity QED devices
- Low-threshold lasers
- Optical sensors
- Optical frequency combs
Outline

1. Introduction
2. CMOS compatible high-Q cavity
 a. SiO$_2$ clad structure
 b. Photolithographic fabrication
3. Controlling randomness
4. EO modulator / pin receiver
5. DEMUX
6. Summary
Si photonics & Photonic crystal

Si photonics

All-optical switch

- Low energy: 25 pJ
- Response time: ~450 ps

E/O modulator

- Conversion: E ↔ O
 - pn dope region
 - Speed: 12.5 Gbit/s

Ge epitaxial grown

- Detector at 1550 nm
- Speed: 31 GHz
- Responsivity: 1.16 A/W

Photonic crystals

High-Q & low mode volume

- Enhance light & matter interaction

Raman laser

- Light source
 - \(Q = 9 \times 10^6 \)

Problem

1. **Air-bridge structure**
 - Incompatible with Si photonics devices
Si photonics & Photonic crystal

Si photonics
CMOS-process
Photolithography

Integration

Voltage assisted light source

Photonic crystals
High-Q & low mode volume

\[\frac{Q}{V} \]

Enhance light & matter interaction

Problem

2. EB lithography

Incompatible with Si photonics devices

Problem

2. EB lithography

Incompatible with Si photonics devices

Raman laser

Light source
\[Q = 9 \times 10^6 \]
Motivation

Si-photonics

1. SiO₂-cladding
2. Photolithography

Photons crystals

Air-bridge

EB-lithography

Problems

This work has been opening the way of the future...

Fusion of

Si-photonics & Photonics crystals
Design & Simulation

Width-modulated line defect cavity

Principle of confinement

Optimized structure

Fabricated parameter

Photolithographic fabrication? & Dielectric cladding?

FDTD – w/ SiO₂ cladding

Optimized structure

Fabricated parameter

Q = 7.1 \times 10^6

V = 2.4 \left(\frac{\lambda}{n}\right)^3

Q = 8.1 \times 10^5

V = 1.7 \left(\frac{\lambda}{n}\right)^3

Q = 8.1 \times 10^5

V = 1.7 \left(\frac{\lambda}{n}\right)^3
Effect of photolithography

Fabrication error (SEM images)

Width-modulated line defect cavity

Max amount of shift: 9 nm

L3 cavity

Max amount of shift: 63 nm

-->

Width-modulated line defect cavity is robust against the proximity effect coming from photolithography.
Properties

Transmission spectrum

The highest Q of PhCs demonstrated with photolithography

$Q = 2.2 \times 10^5$
Outline

1. Introduction
2. CMOS compatible high-Q cavity
 a. SiO$_2$ clad structure
 b. Photolithographic fabrication
3. Controlling randomness
4. EO modulator / pin receiver
5. DEMUX
6. Summary
Effect of photolithography

Simulation including the deviation of hole diameter

![Graph showing the relationship between Q-factor and deviation of hole diameter.](image)
Managing the randomness

3. Controlling randomness

Design of our device

Waveguide width

W1.05 → wide
W0.98 → narrow

Cutoff frequency (mode gap)

Position of light localization occurs randomly in W0.98

Copyright © Keio University | 14
Managing the randomness

3. Controlling randomness

Design of our device

Waveguide width

W1.05 → wide
W0.98 → narrow

Cutoff frequency (mode gap)

Position of light localization
occurs only in W0.98

The effect of randomness occurs in a limited area (controlled way)
Regimes of randomness

- **Dispersive** \(l_c \gg L \)
- **Diffusive** \(l_c \approx L \)
- **Localized** \(l_c \ll L \) — Strong

Calculation

- Performed 18 times calculation
- 2 nm deviation to the diameter and position of PhC holes

Experiment

- 18 devices measured
- Setup:
 - TLD
 - PCWG
 - PM

Localization observed at desired position

\[Q = 2.4 \times 10^5 \]
Yield rate of obtaining localization

Calculation

33% 56% 61% 67%

Experiment

28% 67% 61% 83%

> 80% yield obtained

Using random PhC for controlled experiment

EO modulation achieved w/ pin structure integrated at W0.98 regime

EO modulation achieved w/ pin structure integrated at W0.98 regime
Outline

1. Introduction
2. CMOS compatible high-Q cavity
 a. SiO$_2$ clad structure
 b. Photolithographic fabrication
3. Controlling randomness
4. EO modulator / pin receiver
5. DEMUX
6. Summary
EO modulator

<table>
<thead>
<tr>
<th>Fabrication process</th>
<th>Photolithography (easy)</th>
<th>EB Lithography (complicated)</th>
<th>Photolithography (easy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Silica clad</td>
<td>Air-bridge</td>
<td>Silica clad</td>
</tr>
<tr>
<td>Size</td>
<td>400μm×500μm</td>
<td>10μm×5μm</td>
<td>10μm×5μm</td>
</tr>
<tr>
<td>Speed</td>
<td>10GHz</td>
<td>100MHz</td>
<td>100MHz</td>
</tr>
<tr>
<td>Voltage</td>
<td>5V</td>
<td>2V</td>
<td>2V</td>
</tr>
</tbody>
</table>

Photo detection on silicon chip

Ge on Si detector $0.89 \sim 1.16 \text{ A/W}$

31GHz Ge $n-i-p$ waveguide photodetectors on Silicon-on-Insulator substrate

Tao Yin1, Rami Cohen2, Mike M. Morse1, Gadi Sarid1, Yoel Chetrit2, Doron Rubin3, and Mario J. Paniccia1

1Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95054, USA
2 Intel Corporation, S.B.1 Park Har Hatziv, Jerusalem, 91031, Israel
3 Corresponding author: tao.yin@intel.com

Received 17 Aug 2007; revised 2 Oct 2007; accepted 5 Oct 2007; published 9 Oct 2007
17 October 2007 / Vol. 15 / No. 21 / OPTICS EXPRESS 13965

- Developed by a number of groups (Intel, IBM, MIT, Cornell, etc…)
- **Advantage:**
 - Very fast (>40 GHz)
 - High sensitivity (QE~80%)
- **Disadvantage**
 - Complicated fabrication
 - Large dark current due to defects

Ion-implanted Si detector 0.8 A/W

CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 3, FEBRUARY 1, 2007

- Developed by MIT
 - **Advantage:**
 - All-silicon = CMOS-Compatible
 - Good sensitivity and speed
 - **Disadvantage:**
 - Unstable (large aging effect)
 - Large dark current due to defects
Advantages of an all-silicon detector

Detect 1.5-μm telecom light using Si-chip integrated p-i-n diode

Advantages:

- Low dark current (because it is all-silicon)
- High sensitivity (due to the high-\(Q \) cavity)
- CMOS compatible fabrication
- Wavelength channel selective detector
Experimental result & calculation

 Numerical model

 Light energy u stored in cavity

$$\frac{du}{dt} = \sqrt{T} P_{in} - \frac{u}{\tau_{ph}} - \sigma N \frac{c}{n} \frac{u}{n^2 V_m} - \frac{2c^2 \beta}{n^2 V_m} u^2$$

 Carrier density N

$$\frac{dN}{dt} = \frac{2c \beta \lambda}{h n^2 V_m^2} u^2 - \frac{N}{\tau_c} - \frac{I}{eV_m} + \frac{2\alpha \lambda}{h n V_m} u$$

 Carriers generated by OPA
 Carrier generation by TPA
 Energy loss by FCA

 Current vs. carrier density

$$I = e \mu \phi S \frac{N}{d}$$ (Einstein-Smoluchowski relation)

 Good agreement between experiment and calculation
 High efficiency confirmed by model calculation

 Copyright © Keio University
Dark (leak) current: Air-bridge PhC

Very low dark current (max. -15 pA @ -3 V)
Dark (leak) current: SiO_2 clad PhC nanocavity

![Graph showing photocurrent vs. bias voltage](image-url)
Responsivity of SiO$_2$ clad pin PhC nanocavity

![Responsivity graph](image)

- **Photocurrent (A)** vs **Input power (W)**
- **13.4 mA/W**
- **0.89 % at 0.3mW input power**

4. All-silicon pin receiver
Comparison w/ other detectors

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Quant. eff.</th>
<th>Dark current</th>
<th>Min. detectable in. light power</th>
<th>Device length</th>
<th>Operation voltage</th>
<th>Operation reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si PhC (SiO₂ clad)</td>
<td>0.89%</td>
<td>12 pA</td>
<td>~100 nW</td>
<td>8.4 μm</td>
<td>-3 V</td>
<td>This work (2017)</td>
</tr>
<tr>
<td>Si PhC (AB)</td>
<td>9.7%</td>
<td>15 pA</td>
<td>0.9 nW</td>
<td>8.4 μm</td>
<td>-3 V</td>
<td>APL 96, 101103 (2010).</td>
</tr>
<tr>
<td>Ge on Si</td>
<td>71%</td>
<td>169 nA</td>
<td>~190 nW</td>
<td>50 μm</td>
<td>-2 V</td>
<td>Intel: OE 15, 13965 (2007).</td>
</tr>
<tr>
<td>Si⁺ implanted Si</td>
<td>~16%</td>
<td>0.5 nA</td>
<td>~2.5 nW</td>
<td>3~4 mm</td>
<td>-5 V</td>
<td>MIT: IEEE-PTL 18, 1882 (2006)</td>
</tr>
<tr>
<td>AlGaInAs-QW</td>
<td>~25%</td>
<td>~140 nA</td>
<td>~0.45 μW</td>
<td>~400 mm</td>
<td>-3 V</td>
<td>Intel: OE 15, 6044 (2007)</td>
</tr>
<tr>
<td>InGaAs</td>
<td>~80%</td>
<td>1.5 nA</td>
<td>~1.6 nW</td>
<td></td>
<td>-5 V</td>
<td>From brochure</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. CMOS compatible high-Q cavity
 a. SiO$_2$ clad structure
 b. Photolithographic fabrication
3. Controlling randomness
4. EO modulator / pin receiver
5. DEMUX
6. Summary
Principle of our DeMUX

Linear frequency tuning achieved by changing lattice constant

• Top view

• FDTD calculation
Photonic Structure Group, Keio University

PhC DeMUX filter fabricated w/ CMOS compatible process

- DeMUX design w/ tuning heater

- Fabricated DeMUX device

First demonstration of photolithographically fabricated photonic crystal DeMUX
In-plane 8ch DWDM demonstration

Setup

Eye pattern

1 GHz

(c)

2.5 GHz

5. DeMUX
We can achieve DeMUX with 64 channels with small crosstalk

FDTD calculation

- Transmittance of 32 channels DeMUX

- Transmittance of 64 channels DeMUX
Discussions & Comparisons

First demonstration of photolithographically fabricated photonic crystal DeMUX

<table>
<thead>
<tr>
<th>Stability & Structure</th>
<th>Fabrication method</th>
<th># of channels</th>
<th>Channel spacing</th>
<th>Configuration</th>
<th>Footprint</th>
<th>Other remarks</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High & PhC SiO₂ clad</td>
<td>Photo-lithography</td>
<td>8</td>
<td>267 GHz</td>
<td>In-plane</td>
<td>110 μm²</td>
<td>WM cavity</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>131 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low & PhC air-bridge</td>
<td>EB lithography</td>
<td>5</td>
<td>3.7 THz</td>
<td>In-plane</td>
<td>30 μm²</td>
<td>L3 cavity</td>
<td>OE 14, 12394 (2006)</td>
</tr>
<tr>
<td>Low & PhC air-bridge</td>
<td>EB lithography</td>
<td>32</td>
<td>100 GHz</td>
<td>Out-of-plane</td>
<td>100 μm²</td>
<td>L3 cavity</td>
<td>OE 22, 4698 (2014)</td>
</tr>
<tr>
<td>High & Si-AWG</td>
<td>Photo-lithography</td>
<td>8</td>
<td>250 GHz</td>
<td>In-plane</td>
<td>17000 μm²</td>
<td></td>
<td>OL38, 2961 (2013)</td>
</tr>
</tbody>
</table>

Copyright © Keio University
Outline

1. Introduction
2. CMOS compatible high-Q cavity
 a. SiO$_2$ clad structure
 b. Photolithographic fabrication
3. Controlling randomness
4. EO modulator / pin receiver
5. DEMUX
6. Summary
Summary: Photonic crystal

1. CMOS compatible high-Q cavity
 a. Fabrication: Photolithography
 b. Structure: SiO2 clad structure

 Highest Q w/ CMOS compatible process/structure achieved (Q = 2.2 × 10^5)

2. Application of PhC nanocavity device
 a. All-silicon pin receiver: High sensitivity
 b. DeMUX filter: Very small size w/ ~100 GHz spacings

 Small dark current / small size / etc.
Acknowledgement

The team

Support

Strategic Information and Communications R&D Promotion Programme (SCOPE), from the Ministry of Internal Affairs and Communications