Nonlinear Parametric Oscillation Phase-matched via High-order Dispersion in High-Q Silica Toroid Microresonators

ALPS2018, 24, April, 2018

Shun Fujii, Minori Hasegawa, Ryo Suzuki, and Takasumi Tanabe

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Japan
Outline

1. Background
 - Optical parametric oscillator
 - Phase-matched four-wave mixing in microresonators

2. Numerical simulation of cavity dispersion

3. Experimental observation

4. Summary
Optical parametric oscillators (OPOs)

$\chi^{(2)}$ Nonlinear crystal

Difference frequency generation

$\chi^{(3)}$ Optical fiber OPO

High-Q Microresonators

Degenerated FWM

- On chip-scale (small)
- Low cost
- Low-power drive

20 resonators on a chip
Phase-matched FWM in microresonators

- Anomalous dispersion Kerr comb generation

- Initial FWM requires modulation instability gain
- MI gain requires *anomalous dispersion*
- Balance between Kerr effect and dispersion

Phase-matched FWM in microresonators

- Scheme in this work (Parametric sideband generation)
 - MI gain is achieved by unique phase-matching
 - Dispersion near the pump is normal
 - Phase-matching far from the pump mode

- Optical fiber OPO
- Bulk magnesium fluoride
- Silica microspheres

Definition of cavity dispersion

Resonance frequencies (μ is mode number)
$$\omega_\mu = \omega_0 + D_1 \mu + \frac{1}{2} D_2 \mu^2 + \frac{1}{6} D_3 \mu^3 + \frac{1}{24} D_4 \mu^4$$

Phase-matching condition (residual dispersion) for initial sidebands
$$\Delta \omega = \omega_\mu - \omega_0 - (\omega_0 - \omega_{-\mu}) = D_2 \mu^2 + \frac{D_4}{12} \mu^4 \to 0$$
$$\mu^2 = -\frac{12 D_2}{D_4} (D_2 \cdot D_4 < 0)$$

Fourth-order dispersion plays important role in phase-matched FWM!
Calculation method of cavity dispersion

Geometry dispersion
Finite-element method

Resonance frequency (Hz)

Sellmeier equation

Refractive index

Material dispersion

\[n^2 = 1 + \sum_i \frac{A_i \cdot \lambda^2}{\lambda^2 - B_i^2} \]

A, B : coefficient (const.)

Silica toroid microresonator

Field distribution

Group velocity dispersion

2-TE

Major diameter

Minor diameter

1-TE

2-TM

Resonator A (Major 60 um Minor 4 um)
Resonator B (Major 25 um Minor 4 um)

\[\beta_2 (ps^2/Km) \]

Wavelength (nm)
Phase-matching points depending on cavity geometry

Major diameter 120 um, Minor diameter 8 um, 1-TE mode

Total dispersion

Resonator A (1-TE)
FSR: $D_1/2\pi = 550$ (GHz)

$$1/D_2\mu^2 + 1/D_3\mu^3 + 1/24D_4\mu^4$$

Phase-matching condition

$$\Delta\omega' = 1/D_2\mu^2 + 1/12D_4\mu^4$$

Initial FWM occurs at the points $\Delta\omega = 0$

Phase-matching point!
Phase-matching points depending on cavity geometry

Phase-matched wavelength can be controlled by changing pump or geometry.

This method offers chip-scale arbitrary frequency generators (convertors)!
Fabrication process of silica toroid microresonator

1. Photolithography

2. HF wet etching

3. CO2 laser reflow

(Major diameter 20~200 μm)
(Minor diameter 3~12 μm)
Experimental setup and optical properties

Experimental setup

- Tunable laser diode
- EDFA
- Polarization controller
- Microcavity
- Function generator
- PM or OSC
- OSA

Transmission spectrum

\[Q \approx 1 \times 10^7 \]

Optical spectrum (anomalous dispersion Kerr comb)

- Power (dBm)
- Wavelength (nm)
Observation of OPO in Resonator A

Major diameter 118 um Minor diameter 9 um 1-TE mode

Simulation

Experiment

Phase-matched wavelength

Pump

Simulation

Experiment
Observation of OPO in Resonator B

Major diameter 54um Minor diameter 8 um 2-TE mode

Simulation

Experiment

Phase-matched wavelength

Pump

Simulation

Power (dBm)

Frequency (THz)

Experiment

Resonator (Major 27um Minor 4 um, 2-TE) detuning 1

1999 1874 1763 1666 1578 1499 1427 1363 1303 1249 1199

10 0 -10 -20 -30 -40 -50

Frequency (THz)

Resonator (Major 27um Minor 4 um, 2-TE) detuning 2

1999 1874 1763 1666 1578 1499 1427 1363 1303 1249 1199

10 0 -10 -20 -30 -40 -50
Summary

- Demonstrated optical parametric oscillation in on-chip high-Q silica toroid microresonator

- Investigated the dependence of phase-matching condition on pump wavelength and cavity geometry

- Observed pure OPO signals and broadband four-wave mixing light by changing the pump wavelength
Thank you for your attention

Funding information

JSPS KAKENHI Grant Number JP15H05429
Grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for the Photon Frontier Network