Silica toroid microcavity coupled to silicon photonic chip

Hajime Kumazaki¹, Yuyang Zhuang¹,², Shun Fujii¹, Koki Yube¹, and Takasumi Tanabe¹
¹. Department of Electronics and Electrical Engineering, Keio University (JAPAN), 2. Department of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications (China)

Abstract
Efficient optical coupling to whispering gallery mode (WGM) microresonators is important for a wide range of applications. We experimentally demonstrated efficient optical coupling between low-index silica whispering gallery mode microresonator with high-index silicon chip. We can minimize the phase index mismatch by using photonic crystal waveguide (PhC-WG) as a coupler.

Background

- **WGM resonator**
- **Tapered fiber**
- **Planar waveguide coupler**

Motivation

The n_eff of an air-bridged PhC-WG is close to that of a silica microtoroid, when the wavelength is close at the mode edge of the PhC-WG.

Devices

- **PhC-WG**

Experimental Results

- **Measurement setup**

Experimental Results – Coupling efficiency

- **Conclusion**

In this work, we report optical coupling between silica WGM microresonator and CMOS-compatible PhC-WG and demonstrate extremely highly coupling efficiency of higher than 99%. The phase-matching is achieved by the use of W0.98 PhC-WG. This result provides a robust method of ultrahigh-Q WGMs to be coupled with a high-index silicon photonics integrated platform.