Towards Mode-locking of an active Whispering-Gallery-Mode microresonator

Tomoki S. L. Prugger Suzuki¹, Shun Fujii¹, Rammaru Ishida¹, Riku Imamura¹, Mizuki Ito¹, Hideyuki Maki²,⁵, Lan Yang³, Sze Yun Set⁴ and Takasumi Tanabe¹

1. Electronics and Electrical Engineering, Keio Univ.
3. School of Engineering and Applied Science, Washington Univ. in St. Louis
4. Research Center for Advanced Science and Technology, The University of Tokyo
5. JST-PRESTO
Outline

• Background & Motivation
• Device Fabrication
• Numerical work
• Summary & Future work
Background & Motivation

High repetition rate Modelocked Lasers (HR ML)

Applications
- Laser processing
- Optical communication
- Optical signal processing
- LIDAR and remote sensing
- Spectroscopy
High repetition rate Modelocked Lasers (HR ML)

- Laser processing
- Optical communication
- Optical signal processing
- LIDAR and remote sensing
- Spectroscopy

Frep & Cost

<table>
<thead>
<tr>
<th>F_{rep}</th>
<th>F_{rep}> 10GHz</th>
<th>F_{rep}> 100 GHz</th>
<th>F_{rep}< 1GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication & Cost</td>
<td>✗</td>
<td>✗</td>
<td>O</td>
</tr>
<tr>
<td>Integration</td>
<td>O</td>
<td>✗</td>
<td>O</td>
</tr>
</tbody>
</table>
Objective of the research

Modelocking of Whispering Gallery Mode Microlaser

- High repetition rate (>100GHz)
- Small footprint
- Low power consumption
- Cost effective
- On-chip integrability

Repetition rate $\propto \frac{1}{\text{size}}$

D=300μm \rightarrow 220GHz
Objective of the research

Modelocking of Whispering Gallery Mode Microlaser

- High repetition rate (>100GHz)
- Small footprint
- Low power consumption
- Cost effective
- On-chip integrability

Repetition rate $\propto \frac{1}{\text{size}}$

D=300μm → 220GHz

Carbon nanotubes (CNT) as saturable absorber

- Simple fabrication
- Cost effective
- Easy integration to fiber systems

$$\alpha(I) = a_{ns} + \frac{a_0}{1 + \frac{I}{I_{sat}}}$$

- a_0: Modulation depth
- I_{sat}: Saturation Intensity
- a_{ns}: Non-saturable loss
Outline

• **Background & Motivation**
 - WGM Modelocked Microlaser

• **Device Fabrication**
 - Carbon nanotube integration
 - Erbium doping technique

• **Numerical work**
 - WGM microlaser modelocking regime investigation

• **Summary & Future work**
CNT integration

<table>
<thead>
<tr>
<th>CNT integration methods</th>
<th>Chemical Vapor Deposition (CVD)</th>
<th>CNT-embedded polymer coating</th>
<th>CNT probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q factor</td>
<td>✗</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>fabrication</td>
<td>✗</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>SA properties</td>
<td>△</td>
<td>○</td>
<td>□</td>
</tr>
</tbody>
</table>

CNT integration

<table>
<thead>
<tr>
<th>CNT integration methods</th>
<th>Chemical Vapor Deposition (CVD)</th>
<th>CNT-embedded polymer coating</th>
<th>CNT probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q factor</td>
<td>❌</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>fabrication</td>
<td>❌</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>SA properties</td>
<td>△</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

CNT probe as saturable absorber

\[
a(l) = a_{ns} + \frac{\alpha_0}{1 + \frac{l}{\ell_{sat}}}
\]

- Loss vs. Intensity (MW/cm²)
- CNT loss vs. Gap (nm)
CNT integration

<table>
<thead>
<tr>
<th>CNT integration methods</th>
<th>Chemical Vapor Deposition (CVD)</th>
<th>CNT-embedded polymer coating</th>
<th>CNT probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q factor</td>
<td>✗</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>fabrication</td>
<td>✗</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>SA properties</td>
<td>△</td>
<td>◯</td>
<td>□</td>
</tr>
</tbody>
</table>

CNT probe as saturable absorber

\[
\alpha(t) = \alpha_{ns} + \frac{\alpha_0}{1 + T_{sat}}
\]

- Low loss
- Simple fabrication
- Adjustable SA parameters
Er$^{3+}$-doped WGM microtoroid

Fabrication by sol-gel method

Evaluation

$Q = 10^7$ (@1545nm)
Diameter: 40 μm
Er concentration: 1.9×10^{18} cm$^{-3}$
Threshold power: 1.2 μW
Er3+-doped WGM microtoroid fabrication by sol-gel method:

- Er3+-doped SiO\textsubscript{2}
- photolithography
- wet etching (BHF)
- dry etching (XeF\textsubscript{2})
- reflow (CO\textsubscript{2} laser)

Evaluation:

\[Q = 10^7 \, (@1545\text{nm}) \]
Diameter: 40 μm
Er concentration: \(1.9 \times 10^{18} \text{ cm}^{-3}\)
Threshold power: 1.2 μW

But, how much erbium and carbon nanotube is needed to obtain modelocking?
Outline

• Background & Motivation
 ➢ WGM Modelocked Microlaser

• Device Fabrication
 ➢ Carbon nanotube integration
 ➢ Erbium doping technique

• Numerical work
 ➢ WGM microlaser modelocking regime investigation

• Summary & Future work
Modelocked WGM microlaser - simulation

Modified Nonlinear Schrödinger Equation

\[
\frac{\partial}{\partial T} A(T, t) = \left(-iD \frac{\partial^2}{\partial t^2} + i\delta |A|^2 \right) A(T, t) + \left((g + \frac{g}{\omega^2} \frac{\partial^2}{\partial t^2}) - (l + q(T, t)) \right) A(T, t)
\]

- Dispersion
- Self-Phase Modulation (SPM)
- Gain
- Loss (Q factor) + saturable absorber
Modelocked WGM microlaser - simulation

Modified Nonlinear Schrödinger Equation

\[
\frac{\partial}{\partial T} A(T, t) = \left(-iD \frac{\partial^2}{\partial t^2} + i\delta |A|^2 \right) A(T, t) + \left((g + \frac{g}{\omega_g^2} \frac{\partial^2}{\partial t^2}) - (l + q(T, t)) \right) A(T, t)
\]

- Dispersion
- Self-Phase Modulation (SPM)
- Gain
- Loss (Q factor) + saturable absorber

Contribution graph

- Improved device understanding
- Predictive capability
Modelocked WGM microlaser - simulation

Modified Nonlinear Schrödinger Equation

\[
\frac{\partial}{\partial T} A(T, t) = \left(-iD \frac{\partial^2}{\partial t^2} + i\delta |A|^2 \right) A(T, t) + \left((g + \frac{g}{\omega_g^2} \frac{\partial^2}{\partial t^2}) - (l + q(T, t)) \right) A(T, t)
\]

- Dispersion
- Self-Phase Modulation (SPM)
- Gain
- Loss (Q factor) + saturable absorber

Contribution graph

- Improved device understanding
- Predictive capability
Modelocked WGM microlaser - simulation

\[Q = 10^8 \]
\[\beta_2 = -10 \text{ ps}^2/\text{km} \]

- Unstable regime
- Multiple pulses regime
- Stable modelocking regime
- No modelocking regime

Modelocking regime was investigated
Gain is limiting factor:

→ **Ultra high** Q ($>10^7$) cavity is necessary for modelocking at low gain
 - Gain $>$ loss for CW lasing
 - Nonlinear loss by SA dominates loss for pulse formation
Modelocked WGM microlaser - simulation

Low gain

\[
\Delta |A| \quad \text{against} \quad \text{Power (W)}
\]

- **Gain**
- **Loss**
- **Dispersion**
- **SPM**
Modelocked WGM microlaser - simulation

- Low gain
- Decreased intracavity power
Modelocked WGM microlaser - simulation

Low gain
Decreased intracavity power
SPM is weak
Modelocked WGM microlaser - simulation

Low gain
Decreased intracavity power
SPM is weak
Weak dispersion is needed
Modelocked WGM microlaser - simulation

$Q=10^8$

$\alpha_0 = 0.0005$

Weak anomalous dispersion is necessary for modelocking at low gain
- Pulse formation is the result of gain and nonlinear loss action
- Careful cavity dispersion engineering is necessary
Weak anomalous dispersion is necessary for modelocking at low gain
- Pulse formation is the result of gain and nonlinear loss action
- Careful cavity dispersion engineering is necessary
Modelocked WGM microlaser - simulation

Adjustable by CNT probe

Gain < Loss

No ML

Stable ML

Unstable ML

Modulation depth α_0
Summary & Future work

Modelocking of Whispering Gallery Mode Microlaser

[Device fabrication]

- We developed CNT integration method
 - CNT probe allows adjustable modulation depth

- We fabricated er-doped WGM microtoroids by sol-gel method
 - Low-threshold CW lasing was observed

[Numerical work]

- We investigated WGM microlaser modelocking regime
- Design guidelines for stable modelocking:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>D=150μm</td>
</tr>
<tr>
<td>Q factor</td>
<td>> 10^7</td>
</tr>
<tr>
<td>Saturable absorber</td>
<td>CNT probe (α₀ = 10^{-5} ~ 10^{-4})</td>
</tr>
</tbody>
</table>
Thank you for your attention.

This work was supported by JSPS KAKENHI (JP18K19036, JP19H00873), Amada Foundation, and MEXT Q-LEAP.